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Several formulas for crossing functions arising in the continuum limit of critical
two-dimensional percolation models are studied. These include Watts’s formula
for the horizontal-vertical crossing probability and Cardy’s new formula for the
expected number of crossing clusters. It is shown that for lattices where con-
formal invariance holds, they simplify when the spatial domain is taken to be
the interior of an equilateral triangle. The two crossing functions can be
expressed in terms of an equianharmonic elliptic function with a triangular
rotational symmetry. This suggests that rigorous proofs of Watts’s formula and
Cardy’s new formula will be easiest to construct if the underlying lattice is
triangular. The simplification in a triangular domain of Schramm’s ‘‘bulk
Cardy’s formula’’ is also studied.
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1. INTRODUCTION

The critical behavior of percolation is not fully understood, either rigor-
ously or formally. As the percolation threshold is approached, connected
clusters occur with high probability on ever larger length scales. It has been
conjectured that in any dimension, there is a universal scaling limit of iso-
tropic short-range percolation models, defined over the continuum and
independent of the details of the model, such as the lattice and percolation
type (site or bond). (2) This continuum theory would capture the connecti-
vity of typical configurations of the underlying discrete model, at or near
criticality.



Conformal field theory makes predictions for the crossing probabilities
of the continuum limit of critical two-dimensional percolation, and espe-
cially, predicts that they are conformally invariant. (9) For example, if the
continuum theory is confined to a spatial domain W plus boundary “W, and
c1, c2 are disjoint pieces of “W, the probability of the event that c1, c2 are
connected by a percolation cluster is predicted to be invariant under trans-
formations that are conformal on W (though not necessarily on “W). The
probabilities of more complicated crossing events, involving more than two
pieces of “W, are also predicted to be invariant.

In the first applications of conformal field theory to percolation,
W was taken to be a rectangle, with aspect ratio r=def width/height. In this
geometry, Cardy (7) derived a formula for the crossing function Ph(r), the
probability that the two vertical sides are horizontally connected. His
formula takes on a simpler form if the rectangle is conformally mapped
onto the upper half plane H … C, and its boundary to “H=R 2 {.}. The
vertical sides are mapped to disjoint line segments on the real axis, one of
which can be taken without loss of generality to be semi-infinite. They are
usually taken to be [0, z] and [1, .], where z ¥ (0, 1), with z=0, 1/2, 1
corresponding to r=., 1, 0. We write Ph(z)=def

Ph(r(z)). If the underlying
discrete model is bond percolation on a square lattice, duality suggests
Ph(1/r)=1 − Ph(r), i.e., Ph(1 − z)=1 −Ph(z), so that Ph(1)=Ph(1/2),
the probability that two opposite sides of a large square are connected by a
critical percolation cluster, should equal 1/2.

On the numerical side, crossing events and their conformal invariance
were extensively investigated by Langlands and collaborators, (13, 14) and it
was verified that Cardy’s formula is valid for discrete percolation models
on a rectangular square lattice of size L × LŒ, with r=L/LŒ, in the limit
L, LŒ Q .. They also investigated Phv(r), the probability that all four sides
of the rectangle are connected. Watts (23) derived a formula for the equiva-
lent function Phv(z)=def

Phv(r(z)) from conformal field theory by making
additional assumptions, and his formula agrees well with the data of
Langlands et al. It should be noted that Phv [ Ph, and that by symmetry,
Phv(1/r)=Phv(r), i.e., Phv(1 − z)=Phv(z). Also, it is clear that Phv(r)/
Ph(r) Q 1 as r Q ., i.e., Phv(z)/Ph(z) Q 1 as z Q 0.

Cardy (8, 9) later derived a formula for the expected number of percola-
tion clusters that cross between c1, c2 (the left and right-hand sides of a
rectangle, or the two corresponding line segments in “H). This may be
viewed as a function Nh(r), or equivalently a function Nh(z)=def Nh(r(z));
necessarily, Nh \ Ph.

So in all, three crossing formulas for critical percolation have been
derived from conformal field theory: formulas for Ph(z), Phv(z), and Nh(z),
which yield formulas for Ph(r), Phv(r), and Nh(r). Recently, Smirnov (22)
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provided the first rigorous proof of any of these, namely Cardy’s formula
for Ph(z). He showed that critical site percolation on the triangular lattice
has a conformally invariant scaling limit, and that discrete percolation
cluster boundaries converge to a stochastic Loewner evolution process.
These facts followed from his proof that in a general domain W, a confor-
mally transformed Cardy’s formula is valid. This includes a version due
to L. Carleson (unpublished, but see ref. 9, Section 7.2, and ref. 24,
Prediction 7). Suppose H is mapped conformally onto an equilateral triangle
gABC in the complex plane, and that the map extends to the
boundary, with [ − ., 0], [0, 1], [1, .] being mapped to the edges AB, BC,
CA. So w ¥ BC and z ¥ (0, 1) will correspond. Carleson noticed that
P̃h(w)=def

Ph(z(w)) simply equals Bw/BC. That is, Cardy’s formula is for-
mally equivalent to the statement that that the line segment Bw is con-
nected by a critical percolation cluster to the opposite side of the
triangle, CA, with probability equal to the fraction of the side BC occupied
by Bw. Equivalently, the real-valued function P̃h(w) is the restriction to
one side of the triangle of a particularly simple analytic function of w:
a linear function.

The triangular symmetry of Carleson’s restatement made possible
Smirnov’s proof, which is specific to a triangular lattice. Smirnov notes,
‘‘It seems that 2p/3 rotational symmetry enters in our paper not because of
the specific lattice we consider, but rather [because it] manifests some
symmetry laws characteristic to (continuum) percolation.’’ Whether his
proof extends to other lattices is unclear.

In this paper we study whether the predicted formulas for the func-
tions Phv(z) and Nh(z), like Cardy’s formula for Ph(z), simplify when the
spatial domain W is taken to be an equilateral triangle, rather than a rec-
tangle or the upper half plane H. We show that they do. In particular, we
show that the four-way crossing function P̃hv(w)=def

Phv(z(w)) predicted for
the equilateral triangle has its second derivative P̃'

hv(w) equal to a familiar
elliptic function: an equianharmonic Weierstrass ^-function, where
‘‘equianharmonic’’ signifies that the period lattice of the ^-function is
triangular, with a p/3 rotational symmetry. (See ref. 1, Section 18.13.) This
contrasts with the linear function P̃h(w), the second derivative of which is
zero. Our new representation for P̃hv(w), i.e., for Phv(z) or Phv(r), imme-
diately yields a simple closed-form expression for Phv(1/2)=Phv(1),
the probability that all four sides of a large square are connected by a
critical percolation cluster; namely, 1/4+(`3/4p)(3 log 3 − 4 log 2) %

0.322. It would be difficult though not impossible to derive this expression
directly from Watts’s formula.

We show that Cardy’s recent formula for Nh(z), like Watts’s formula
for Phv(z), simplifies in an equilateral triangle. Ñ'

h (w), the second
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derivative of Ñh(w)=def
N(z(w)), can also be expressed in terms of the

equianharmonic ^-function. In fact, we derive a curious identity relating
the three crossing functions P̃h, P̃hv, and Ñh, or equivalently Ph, Phv,
and Nh; namely, that 2Nh(z) −Ph(z) −Phv(z) must equal (`3/2p)
log(1/(1 − z)). Setting z=1/2 yields that Nh(1/2), i.e., Nh(1), the expected
number of critical percolation clusters crossing between two opposite sides
of a large square, should equal 3/8+(`3/8p)(3 log 3 − 2 log 2) % 0.507.
In a final study of a crossing formula, we treat a fourth Cardy-type
formula proved rigorously by Schramm (19) for triangular-lattice site perco-
lation, which is valid ‘‘in the bulk’’ and does not follow from boundary
conformal field theory. We show it has a simple restatement in a suitable
triangular domain.

Our successful simplification of the crossing event formulas indicates
that an equilateral triangular domain is a good ‘‘fit’’ to the continuum limit
of critical percolation. It also suggests that rigorous proofs of Watts’s
formula and Cardy’s new formula will be easiest to construct if the
underlying lattice is triangular. Our restatements contrast with those of
Ziff (28, 29) and Kleban and Zagier, (11, 12) which also involve higher transcen-
dental functions. They focused on the continuum limit of percolation in a
rectangle, and especially on the derivatives P −

h(r) and P −

hv(r) of the rec-
tangular crossing functions. In our notation, Ziff showed that P −

h(r) is
proportional to [h −

1(0, q=e−pr)]4/3, where h1( · , q) is the first Jacobi theta
function. Also, Kleban and Zagier showed that P −

h, P −

hv, considered jointly,
have interesting modular transformation properties, and that these proper-
ties characterize P −

hv(r). The relation between our results and theirs is not
yet clear.

Section 2 presents each crossing event formula in a standard form.
Section 3 covers conformal mapping concepts, including the equianhar-
monic ^-function. The simplified versions of the crossing formulas that
apply in triangular domains are derived in Section 4. An appendix reviews
some basic mathematical facts.

2. CROSSING EVENT FORMULAS

The four crossing formulas for continuum percolation on the closed
upper half plane H involve hypergeometric functions, both Gauss’s 2F1 and
Clausen’s 3F2. They can be stated in a standardized, P-symbol form. (For
hypergeometric functions and P-symbols, see the appendix.) For the first
three formulas, “H is divided into [ − ., 0], [0, z], [z, 1], and [1, .].
A connection between [0, z] and [1, .] corresponds to a horizontal cross-
ing on the original rectangle, and one between [ − ., 0] and [z, 1] to
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a vertical crossing. The probability of a horizontal connection is Ph(z),
with Nh(z) the expected number of such connections. All four segments are
connected with probability Phv(z). Let Phv̄=

def
Ph −Phv, the probability of

there being a horizontal connection that is not also a vertical one.

Formula 2.1 (Cardy [7]). The function Ph(z) equals

3 C(2/3)
C(1/3)2 z1/3

2F1
R1/3, 2/3

4/3
: z 2 3 P ˛ 0 1 . : z

0 0 0

1/3 1/3 1/3

ˇ . (1)

Formula 2.2 (Watts [23]). The function Phv̄(z) equals

`3

2p
z3F2

R1, 1, 4/3
2, 5/3

: z2 3 P ˛
0 1 .

:
z

0 0 0

1/3 1/3 1/3

1 1 0

ˇ . (2)

Formula 2.3 (Cardy [8, 9]). The function Phv̄(z) equals

1
2

−
`3

4p
5log(1 − z)+(1 − z)3 F2

R1, 1, 4/3
2, 5/3

: 1 − z 26 . (3)

Proof. This version of the formula for Nh(z) is not well known. The
version deduced by Cardy from boundary conformal field theory was

1
2

−
`3

4p
5log(1 − z)+2 C

.

m=1

(1/3)m

(2/3)m

(1 − z)m

m
6 . (4)

Formula 2.3 follows from the series representation (A.1), if the 1/m factor
in the summand is written as (1)m − 1 (1)m − 1/(2)m − 1 (m − 1)!. L

Corollary 2.3.1. 2Nh(z) −Ph(z) −Phv(z)=(`3/2p) log(1/(1 − z)).

Proof. This follows by combining Formulas 2.1–2.3, with the aid of
the symmetry relations Ph(1 − z)=1 −Ph(z) and Phv(1 − z)=Phv(z). L

Corollary 2.3.1 ties Nh to Ph and Phv in quite a strong way. To explain
how, we must sketch the heuristic origins of Formula 2.2 in boundary con-
formal field theory. Watts was led to Formula 2.2 by considering ODEs
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satisfied by correlation functions of boundary operators. His candidate for
an ODE satisfied by Phv was the fifth-order Fuchsian equation

3 d3

dz3 [z(z − 1)]4/3 d
dz

[z(z − 1)]2/3 d
dz
4 F=0, (5)

which has P-symbol

P ˛
0 1 .

:
z

0 0 0

1/3 1/3 1/3

0 0 0

1 1 1

2 2 2

ˇ , (6)

but is not of hypergeometric type. Due to a factorization of the differential
operator on the left-hand side of this equation, (11, 12) its solution space
properly contains the solution space of the third-order equation

3 d
dz

[z(z − 1)]1/3 d
dz

[z(z − 1)]2/3 d
dz
4 F=0, (7)

which has P-symbol

P ˛
0 1 .

:
z

0 0 0

1/3 1/3 1/3

1 1 0

ˇ , (8)

and is of hypergeometric type. Furthermore, the solution space of (7)
properly contains the solution space of the second-order equation with
P-symbol

P ˛ 0 1 . : z

0 0 0

1/3 1/3 1/3

ˇ , (9)
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including the function Ph of Formula 2.1. Watts noticed that the solution
space of (7) includes a one-dimensional subspace of functions equal to zero
at z=0 and invariant under z W 1 − z, which are criteria for the func-
tion Phv. For this reason, he expected Phv, and Phv̄=Ph −Phv too, to be
solutions of (7), as well as of (5). This insight led to Formula 1, which
incorporates the P-symbol (8).

Kleban and Zagier (12) noticed that the five-dimensional solution space
of (5) is spanned by the solution space of (7), to which Phv and Ph belong,
and the functions log z and log(1 − z). But by Corollary 2.3.1, the
function Nh is a linear combination of Phv, Ph, and log(1 − z), implying the
following mysterious fact.

Corollary 2.3.2. The function Nh(z), like the functions Phv(z)
and Ph(z), is a solution of Watts’s fifth-order differential equation, Eq. (5).

For the fourth crossing formula, “H is divided into [ − ., z] and
[z, .], with z ¥ R unrestricted. A special boundary condition is imposed:
on the underlying discrete lattice, percolation along the line segment
[ − ., z] is allowed by fiat. Let a distinguished point in H be chosen;
without loss of generality, let it be i=` − 1. Then the function Psurr(z) is
defined to be the probability that i is surrounded by the percolation hull
of [ − ., z], i.e., the outermost boundary of the percolation cluster in H
containing (‘‘growing from’’) [ − ., z]. One expects Psurr(−z)=1 −Psurr(z),
i.e., that Psurr(z) − 1/2 is odd in z.

Formula 2.4 (Schramm [19]). The function Psurr(z) equals 1/2
plus

C(2/3)

`p C(1/6)
z2F1

R1/2, 2/3
3/2

: − z22 3 P ˛ 0 1 . : − z2

0 0 0

1/2 1/3 1/6

ˇ .

In the P-symbol expression on the right, z < 0 and z > 0 correspond to dif-
ferent branches, which are negatives of each other.

3. CONFORMAL MAPS AND FUCHSIAN ODEs

The upper half plane H and any triangle gABC without boundary are
homeomorphic as complex manifolds. In fact, by the Poincaré–Koebe
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uniformization theorem, the complex plane C, the Riemann sphere CP1=def

C 2 {.}, and H are the only simply connected one-dimensional complex
manifolds, up to conformal equivalence. (6) To transfer the Fuchsian ODEs
satisfied by the crossing functions from H to gABC, an explicit expression
for the conformal map w=s(z), i.e., s: H Q gABC, is useful. s is a
Schwarz triangle function, defined by the Schwarz–Christoffel formula. (18)

It extends to a map from the closure of H in CP1, i.e., H 2 R 2 {.}, to the
triangle with boundary. The conditions s(0)=B, s(1)=C, s(.)=A
uniquely determine s.

The inverse Schwarz function S: gABC Q H often has a deeper signi-
ficance than s does, as the equilateral triangle case illustrates. Equilateral
triangles tile the plane, and the inverse function extends to a function
S: C Q CP1 that maps alternating triangles in a checkerboard fashion to
the upper and lower half planes. In modern treatments, this extended map
is classed as one of a handful of ‘‘universal’’ branched covers of CP1 by C,
CP1, or H (see ref. 20, Section 6.4).

Since the triangular lattice is doubly periodic, one expects that S is an
elliptic function, and can equally well be viewed as a function on a complex
elliptic curve C/L, where L=def 2wZ+2wŒZ is an appropriate lattice of
periods (the factors of 2 are traditional). This is correct, as we briefly
sketch; for details, see Abramowitz and Stegun, (1) Section 18.13, and
Sansone and Gerretsen, (18) Sections 14.2 and 14.3. The canonical elliptic
function on C is the Weierstrass function ^(w; g2, g3), defined as the solu-
tion of (^Œ)2=f(^)=def 4^

3 − g2^ − g3 with a unit-strength double pole
at w=0. The parameters g2, g3 ¥ C, both of which cannot be zero, are
related in a nontrivial way to the fundamental half-periods w, wŒ of ^. The
equianharmonic case, which has special symmetries, is the case when g2=0.
Due to the homogeneity relation ^(w; g2, g3)=t2

^(tw; t−4g2, t−6g3), in the
equianharmonic case all nonzero g3 are equivalent, so henceforth
g3 ¥ R0{0}, in particular g3=1, will be taken. In this case the fundamental
half-periods w, wŒ can be chosen to be a complex conjugate pair with
Rw > 0, Iw < 0. If the basic real half-period w+wŒ > 0 is denoted w2, then
w, wŒ will equal (1

2 +
` − 3

2
) w2. So the period lattice L will be a triangular

lattice, with a p/3 rotational symmetry about the origin. Explicitly,
w2=C(1/3)3/4p % 1.530.

The elliptic curve C/L is homeomorphic to a torus and can be viewed
as the parallelogram with vertices 0, 2w, 2w2, 2wŒ, equipped with periodic
boundary conditions. The ^-function maps this parallelogram doubly
onto CP1. Also, ^Œ maps it triply onto CP1. It turns out that in the
equianharmonic case, the torus, i.e., this period parallelogram, can be
subdivided into six equilateral triangles, each mapped by ^Œ with unit mul-
tiplicity onto the left or right half plane. (See ref. 1, Fig. 18.11, which is
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unfortunately not quite to scale.) Due to this, the equilateral inverse
Schwarz function S can be chosen to be essentially ^Œ. The map

z=S(w)=def 1/2+^Œ(w)/2i (10)

will take the equilateral triangle gABC=def
g0W0W0 in w-space to the

upper half plane in z-space, where W0=def (1+ ` − 3

3
) w2. It will take the

boundary of gABC to R 2 {.}, and the vertices w=A, B, C respectively
to z=., 0, 1. As a map from C to CP1, it will take alternating triangles to
the upper and lower half planes. Each of these equilateral triangles, which
tile the plane, has one vertex in each of the congruence classes
A+L, B+L, C+L, i.e., in each of the sets S−1(.)=L, S−1(0), S−1(1).
These classes will be denoted [A], [B], [C].

The ODEs on CP1 ‡ H that are satisfied by the functions of Formu-
las 2.1–2.3 can be pulled back to ODEs on C via the extended map
S: C Q CP1. The important thing to note when performing the pullback is
that S is a branched cover of CP1 by C, the critical points of which are the
points in [A], [B], and [C]. At any w0 ¥ C, necessarily S(w) ’ S(w0)
+const × (w − w0)p to leading order, where p is the multiplicity with which
w0 is mapped to S(w0). (If S(w0)=., the right-hand side must be replaced
by const × (w − w0)−p.) Each critical point has p=3.

The pulled-back ODEs are tightly constrained by the following lemma,
which specifies how P-symbols are pulled back. It is proved by considering
the local (Frobenius) solutions at each point.

Lemma 3.1. Let R: M Q CP1 be a holomorphic map of one-
dimensional complex manifolds. Consider Lu=0, an nth-order Fuchsian
ODE on CP1. It can be pulled back via R to a Fuchsian ODE L̃ũ=0
on M, in the sense that if u=u(z) satisfies Lu=0 then ũ=ũ(w)=def u(R(w))
will satisfy L̃ũ=0. The n characteristic exponents of L̃ at each w0 ¥ M will
equal those of L at z0=R(w0), multiplied by the multiplicity with which
w0 is mapped to z0.

As an illustration of the use of this lemma in pulling back ODEs, we
give a new proof of Whipple’s quadratic transformation formula for 3F2.
(The formula originally appeared in ref. 25, with a combinatorial proof; a
simpler combinatorial proof is due to Bailey. (5) For a useful discussion
placing the formula in context, see Askey, (4) but note the misprint in
Eq. (2.19).) This new proof resembles Riemann’s concise P-symbol proof of
Kummer’s quadratic transformation formulas for 2F1, which is summarized
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in ref. 3, Section 3.9. It relies on the expression (A.4) for the P-symbol
associated to q+1Fq, which is apparently not well known.

Proposition 3.2. Let a, b, c ¥ C with neither a − b+1 nor a − c+1
equal to a nonpositive integer. Then

3F2
R a, b, c

a − b+1, a − c+1
: w2

=(1 − w)−a
3F2

1a − b − c+1, a/2, (a+1)/2
a − b+1, a − c+1

: − 4w
(1 − w)2

2

holds in a neighborhood of w=0.

Remark. The two sides are defined for all w such that |w| < 1, resp.
for all w such that | − 4w/(1 − w)2| < 1. So by analytic continuation,
equality holds at all points within the loop of the curve |4w|=|1 − w|2

surrounding the origin.

Proof. The functions of w on the two sides satisfy third-order
Fuchsian ODEs that follow from the q=2 case of (A2), the ODE satisfied
by q+1Fq. The left and right-hand functions are determined by the addi-
tional condition that they be analytic at w=0 and equal unity there. It will
therefore suffice to prove that the Fuchsian ODEs corresponding to the
two sides are the same up to normalization, i.e., have the same solution
spaces. A necessary condition for this is that their P-symbols be the same,
i.e., by the representation (A.4), that

P ˛
0 1 . w

0 0 a :
b − a 1 b

c − a a − 2b − 2c+2 c

ˇ

=(1 − w)−a P ˛
0 1 .

:
R(w)

0 0 a − b − c+1

b − a 1 a/2

c − a 1/2 (a+1)/2

ˇ , (11)
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where R: CP1
Q CP1 is defined by R(w)=def − 4w/(1 − w)2, or equivalently

P ˛
0 1 .

:
w

0 a 0

b − a a+1 b − a

c − a 2(a − b − c+1) c − a

ˇ

=P ˛
0 1 . : R(w)

0 0 a − b − c+1

b − a 1 a/2

c − a 1/2 (a+1)/2

ˇ . (12)

That is, R must pull back the right-hand P-symbol in (12) to the left-hand
one.

The map w W z=def R(w) takes w=0, 1, . to z=0, ., 0 respectively,
and also w=−1 to z=1. Its critical points are w= ± 1, each of which has
double multiplicity. The exponents in the columns of (12) agree precisely
with what Lemma 3.1 states: the exponents of w=0 and w=. are the
same as those of z=0, and those of w=1 are twice those of z=.. One
might think the left-hand P-symbol would have a fourth critical point,
at w=−1, with exponents twice those of z=1, i.e., 0, 1, 2. But as noted in
the appendix, those exponents are the signature of an ordinary point; so no
fourth column is present.

The preceding argument shows why the 3F2 parameters of the propo-
sition take the values they do, but it does not quite prove the proposition.
As reviewed in the appendix, any Fuchsian ODE on CP1 that has three
singular points and is of third order (i.e., q=2) has 3q+2=8 independent
exponent parameters, which are displayed in its P-symbol, and (q

2)=1
accessory parameter, which is not. For the two ODEs to be the same up to
normalization, they must have the same P-symbol, and also the same
accessory parameter. The latter is most readily verified by changing
variables from z=R(w) to w in the right-hand ODE. An explicit computa-
tion, omitted here, shows that the resulting pulled-back ODE is indeed the
q=2 case of the ODE (A2), with the parameters of the left-hand side. L

What will be used in Section 4 is the following variant of Whipple’s
quadratic transformation. It seems not to have appeared in the literature.
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Proposition 3.3. Let a, b, c ¥ C with (a+b+c)/2 not equal to
a nonpositive integer. Then

3F2
R a, b, c

2, (a+b+c)/2
: w 2

=(1 − w) 3F2
R (a+1)/2, (b+1)/2, (c+1)/2

2, (a+b+c)/2
: 4w(1 − w) 2

holds in a neighborhood of w=0, provided one of a, b, c equals unity.

Remark. The two sides are defined for all w such that |w| < 1, resp.
for all w such that |4w(1 − w)| < 1. So by analytic continuation, equality
holds at all points that are both within the circle |w|=1 and within the
loop of the curve |4w(1 − w)|=1 surrounding the origin.

Proof. This closely follows that of Proposition 3.2; the details are left
to the reader. The only new feature is that equality between the accessory
parameters of the ODEs satisfied by the two sides leads to an additional
condition on the 3F2 parameters, beside the exponent conditions of
Lemma 3.1. Changing variables from z=R(w)=def 4w(1 − w) to w in the
right-hand ODE pulls it back to the left-hand ODE, plus an extraneous
term proportional to (a − 1)(b − 1)(c − 1). Provided one of a, b, c equals
unity, this undesired term is absent. L

4. TRANSFORMED AND RESTATED FORMULAS

In this section we show how the crossing event formulas, Formu-
las 2.1–2.4, simplify in appropriately chosen triangular domains. The
restated formulas appear in Propositions 4.1–4.4. For all but Schramm’s
formula, the appropriate triangle is equilateral. The restatements of
Cardy’s formula and Schramm’s formula do not involve special functions.
The restatements of Watts’s formula and Cardy’s new formula do involve
elliptic functions, but elliptic functions are significantly more familiar than
Clausen’s 3F2. The restatement of Cardy’s formula is of course identical to
Carleson’s, but the other three are new.

The Fuchsian ODEs on CP1 ‡ H of Formulas 2.1–2.3 are pulled back
to ODEs on C ‡ gABC via the inverse Schwarz function S: C Q CP1.
In the normalization of the last section, z=S(w) equals 1/2+^Œ(w)/2i,
with ^ the equianharmonic ^-function, satisfying (^Œ)2=4^

3 − 1. The
equilateral triangle gABC is g0W0W0, i.e., g0, re−ip/6, re ip/6, with side
length r=def |W0 |=2w2/ `3. As noted, w2=def

C(1/3)3/4p % 1.530 is the
basic real half-period of ^.
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Since S maps AB, BC, CA to [ − ., 0], [0, 1], [1, .] respectively, the
line segment BC=W0W0 is of primary interest. Its midpoint is w2=
(W0+W0)/2, which is mapped to 1/2. As a necessary preliminary, the
behavior of the first few antiderivatives of ^Œ along BC will now be
described. (See the tables in ref. 1, Section 18.13, where W0 is
denoted ‘‘z0’’.) Relative to the midpoint, ^Œ is an odd function: it equals
− i at W0 and i at W0. Its antiderivative ^ is even: it equals zero at W0

and W0, and 4−1/3 at the midpoint. The negative antiderivative of ^ is the
so-called Weierstrass zeta function, plus an arbitrary constant. The shifted
negative antiderivative z − p/2 `3 w2 is odd: it equals ip/6w2 at W0 and
− ip/6w2 at W0. The antiderivative of z equals log s plus an arbitrary con-
stant, where s is the Weierstrass sigma function, which equals ep/3 `3e−ip/6

at W0 and ep/3 `3e ip/6 at W0; and ep/4 `321/33−1/4 at the midpoint w2. It is
easily checked that

− Log s(w)+
p

2 `3 w2

w −
p

6 `3
, (13)

which is a double antiderivative of ^, is an even function relative to the
midpoint: it equals zero at W0 and W0, and (1/12)(p/ `3+3 log 3 − 4 log 2)
at the midpoint. Log signifies the principal branch of the logarithm
function.

Proposition 4.1 (Cardy’s Formula, Transformed; cf. Carleson). If
conformal invariance holds, Formula 2.1 corresponds on the equilateral
triangle gABC plus boundary to the following. P̃h(w), the probability that
the boundary segments Bw and CA are connected by a percolation cluster,
is the restriction to BC of an analytic function that is linear. Explicitly,
P̃h(w)=(w − B)/(C − B).

Proof. By Lemma 3.1, the P-symbol of Formula 2 is pulled back
via z=S(w) to

P ˛
[A] [B] [C]

:
w

0 0 0

1 1 1

ˇ , (14)

where [A], [B], [C] are the classes of points on the w-plane that are
mapped by S to z=., 0, 1 respectively. This is because these points are the
critical points of S, and each has triple multiplicity. But a singular point
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with exponents 0, 1 is effectively an ordinary point. So the pulled-back
ODE on C (in particular, on gABC) has no singular points and should
be effectively (d2/dw2) P̃h(w)=0, as can be verified by an explicit
computation. L

Proposition 4.2 (Watts’s Formula, Transformed). If conformal
invariance holds, Formula 2.2 corresponds on the equilateral triangle
gABC plus boundary to the following. P̃hv(w), the probability that all
four boundary segments AB, Bw, wC, and CA are connected by a percola-
tion cluster, is the restriction to BC of an analytic function with the
property that the difference P̃hv̄(w)=def

P̃h(w) − P̃hv(w) is proportional to
(w − B)3 as w Q B, to leading order. Explicitly,

P̃hv(w)=−
3 `3

p
Log s(w)+

3
2

w
w2

−
1
2

, (15)

where s is the equianharmonic Weierstrass sigma function.

Proof. By Lemma 3.1, the P-symbol of Formula 2.1, which partially
specifies the ODE satisfied by Phv(z) and Ph(z), is pulled back via z=S(w)
to

P ˛
[A] [B] [C]

:
w

0 0 0

1 1 1

0 3 3

ˇ . (16)

The condition Phv(r)/Ph(r) Q 1 as r Q ., i.e., Phv(z)/Ph(z) Q 1 as z Q 0,
implies P̃hv(w)/P̃h(w) Q 1 as w Q B. So P̃hv(w) is linear in w as w Q B,
to leading order. By the P-symbol (16), the first nonzero correction must be
cubic.

By changing variables from z=S(w) to w in (7), the third-order ODE
satisfied by Phv(z) and Ph(z), one obtains the striking pulled-back ODE

d
dw

{[^(w)]−1 P̃'

hv(w)}=0 (17)

on C. So P̃hv must be proportional to a double antiderivative of ^. The
condition Phv(1/r)=Phv(r), i.e., Phv(1 − z)=Phv(z), implies that on the
line segment BC, P̃hv must be even around the midpoint w=w2. Moreover,
the condition P̃hv(w)/P̃h(w) Q 1 as w Q B implies P̃hv=0 at the endpoints
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w=W0, W0. Any even double antiderivative of ^ equalling zero at
w=W0, W0 must be a constant times the function (13). For P̃hv, the
constant is set by

P̃ −

hv(B)=P̃ −

h(B)=1/(C − B)=1/(W0 − W0)=`3/2iw2, (18)

together with the fact that [Log s]Œ (B)=z(W0), the value of which is
given above. By examination, the constant should be 3 `3/p; which yields
(15). L

Numerical Remark. A power series expansion of ^(w) about
w=W0 that is accurate to O((w − W0)15) is given in ref. 1, Eq. (18.13.41).
The corresponding expansion about w=W0, i.e., about B, is obtained by
complex conjugation. By twice anti-differentiating this, an expansion
of P̃hv(w) about w=B accurate to O((w − B)17) can be obtained.

Corollary 4.2.1. Phv(1), the probability that all four sides of a large
square are connected by a critical percolation cluster, equals

1/4+(`3/4p)(3 log 3 − 4 log 2) % 0.322. (19)

Proof. Phv(r=1)=Phv(z=1/2)=P̃hv(w=w2) by conformal invari-
ance. This quantity can be computed from (15), using the closed-form
expression for s(w2) given at the beginning of this section. L

Alternative Proof. The expression (19) for Phv(1) can be derived
directly from Watts’s formula, though the derivation is intricate; the
following explains how. Phv(1) equals Phv(1/2), i.e., Ph(1/2) −Phv̄(1/2).
By Formula 2.2,

Phv(1)=1/2 −
`3

4p
3F2

R1, 1, 4/3
2, 5/3

: 1/2 2 , (20)

since Ph(1/2)=1/2. Summing the 3F2 series requires care, since in general,
it is harder to evaluate 3F2 than 2F1. For example, though Gauss’s formula

2F1
Ra, b

c
: 1 2=

C(c) C(c − a − b)
C(c − a) C(c − b)

, R(c − a − b) > 0, (21)

evaluates any 2F1 at unit argument, no general formula for 3F2(a, b,
c; d, e; 1) in terms of gamma functions exists. (26, 27) However, certain
special 3F2’s can be evaluated at unit argument in closed form. At other
argument values, the situation is unresolved. Many ‘‘strange’’ evaluations
of 3F2 and 2F1 at rational points other than unity are known, (10) but most
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can apparently be reduced to evaluations at unity via appropriate trans-
formations of the independent variable.

To move the 3F2 evaluation point in (20) from 1/2 to unity, the new
quadratic transformation formula of Proposition 3.3 can be used. It yields

Phv(1)=1/2 −
`3

8p
3F2

R1, 1, 7/6
2, 5/3

: 1 2 . (22)

(The point 1/2 is on the boundary of the region to which Proposition 3.3
applies; but by the R(; bi − ; ai) > 0 convergence criterion mentioned in
the appendix, the equality of the proposition extends to the boundary.)
Fortunately, the 3F2(1) in (22) can be evaluated in closed form. An inge-
nious application of L’Hôpital’s rule to Gauss’s formula shows that

3F2
R1, 1, a

2, c
: 1 2=

c − 1
a − 1

[k(c − 1) − k(c − a)], a ] 1, R(c − a) > 0
(23)

(see Luke, (15) Section 5.2.4). Here k=def
CŒ/C is the digamma function. So

Phv(1)=1/2 −
`3

2p
[k(2/3) − k(1/2)]. (24)

The values k(2/3), k(1/2) are − c+p/2 `3 − (3/2) log 3 and − c − 2 log 2
respectively, where c is Euler’s constant. (See ref. 17, Vol. 2, App. II.3.)
Substitution yields the expression (19) for Phv(1). L

Proposition 4.3 (Cardy’s New Formula, Transformed). If con-
formal invariance holds, Formula 2.3 corresponds on the equilateral
triangle gABC plus boundary to the following. Ñh(w), the expected number
of percolation clusters connecting the boundary segments Bw and CA, is
the restriction to BC of an analytic function. Explicitly, Ñh(w) equals

−
`3

4p
36 Log s(w)+Log 51

2
−

^Œ(w)
2i

64+
(3 − `3 i)

4

w
w2

+
`3 i

4
.

Proof. This follows from Corollary 2.3.1 by replacing Nh(z), Ph(z),
Phv(z), z by Ñh(w), P̃h(w), P̃hv(w), S(w), respectively, and substituting the
expressions for P̃h(w), P̃hv(w) provided by Propositions 4.1 and 4.2. L

Corollary 4.3.1. Nh(1), the expected number of critical percolation
clusters crossing between opposite sides of a large square, equals

3/8+(`3/8p)(3 log 3 − 2 log 2) % 0.507. (25)
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Proof. Nh(r=1)=Nh(z=1/2)=Ñh(w=w2) by conformal invari-
ance. This quantity can be computed from the formula for Ñh(w), using the
known value of s(w2) and the fact that ^Œ(w2)=0. More simply, it
follows from Corollary 2.1 by substituting the expression for Phv(r=1)=
Phv(z=1/2) provided by Corollary 4.2.1. L

Finally we come to Schramm’s formula, Formula 2.4. It differs from
Formulas 2.1–2.3 in that its restatement employs a triangular domain that
is not equilateral. Let gAŒBŒCŒ … C be an isosceles triangle with interior
angles 2p/3, p/6, p/6 at AŒ, BŒ, CŒ, respectively. (For concreteness, take the
vertices AŒ, BŒ, CŒ equal to 1+i `3/3, 0, 2, respectively.) Special boundary
conditions are imposed: the edge BŒCŒ is divided into BŒw and wCŒ, and on
the underlying discrete lattice, percolation along BŒw is allowed by fiat.
Also, for percolation purposes the edges AŒBŒ and AŒCŒ are identified, so
that in effect, the boundary of gAŒBŒCŒ comprises only the edge BŒCŒ, and
the vertex AŒ is in its interior.

Proposition 4.4 (Schramm’s Formula, Transformed). If con-
formal invariance holds, Formula 2.4 corresponds on the triangle gAŒBŒCŒ

plus boundary, with edges AŒBŒ, AŒCŒ identified, to the following. Let
P̃surr(w) denote the probability that the vertex AŒ is surrounded by the per-
colation hull of the boundary segment BŒw, i.e., the outermost boundary of
the percolation cluster growing from BŒw. Then P̃surr(w) is the restriction
to BŒCŒ of an analytic function that is linear. Explicitly, P̃surr(w)=
(w − BŒ)/(CŒ − BŒ).

Proof. The first thing to observe is that up to trivial changes of the
independent and dependent variables, the function Psurr(z) of Formula 2.4
is identical to the function Ph(z) of Cardy’s Formula 2.1, or more accura-
tely to its analytic continuation. This is the source of the linear behavior
on gAŒBŒCŒ. To see the close relation between the two functions, use
Lemma 3.1 to pull back the P-symbol of Formula 2.4 via the quadratic
map z W − z2 on CP1. The result of this procedure is that Psurr(z) equals
1/2 plus a function in the solution space specified by

P ˛
0 1 .

:
− z2

0 0 0

1/2 1/3 1/6

ˇ=P ˛
− i i .

:
z

0 0 0

1/3 1/3 1/3

ˇ , (26)

since the quadratic map has 0, . as its critical points (of multiplicity 2),
and takes 0, ± i, . to 0, 1, .. There is no fourth column associated to
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z=0 in the right-hand P-symbol, since in the pulled-back ODE, z=0 has
exponents 0, 1 and is effectively an ordinary point. The close connection
between this P-symbol and the P-symbol of Formula 2.1 is obvious.
A careful computation, omitted here, yields

Psurr(z)=1/2+const × [Ph(1/2+iz/2) − 1/2]. (27)

But for the purpose of proving the proposition, (26) will suffice.
Via a conformal map R similar to the map S used in the proofs of

Propositions 4.1–4.3, the right-hand P-symbol in (26) can be pulled back to
a trivial P-symbol. However, it will turn out that R maps a triangle
gAŒBŒCŒ of the above form not onto H, but rather onto the slit half plane
H0[i, +.i). The edges AŒBŒ, AŒCŒ will be mapped to opposite sides of the
slit, and will therefore need to be identified for percolation purposes.
AŒ will be mapped to i, so the statements of the proposition and For-
mula 2.4 will correspond. The map R and gAŒBŒCŒ are chosen as follows.

The function S(w)=1/2+^Œ(w)/2i maps gABC=g0, W0, W0

onto H, and its vertices to ., 0, 1 ¥ “H=R 2 {.}. So R(w)=def
^Œ(w) maps

g0, W0, W0 onto the right half plane, and its vertices to .i, −i,
i ¥ Ri 2 {.i}. By reflecting through the line passing through W0

and W0 (and their midpoint, the real half-period w2), it follows that as well,
R maps the triangle g2w2, W0, W0 onto the left half plane. Therefore
R maps the parallelogram without boundary 0, W0, 2w2, W0 comprising
these two equilateral triangles and the line segment W0W0 (their common
boundary) onto the doubly slit plane C0[i, +.i)0(−.i, −i]. In particu-
lar, it maps the upper half of this parallelogram, the isosceles triangle
gW0, 0, 2w2, onto the slit upper half plane. This triangle has interior angles
2p/3, p/6, p/6. Its vertices are mapped to i, +.i, +.i, respectively.

One accordingly chooses gAŒBŒCŒ=gW0, 0, 2w2 3 g(1+i `3/3),
0, 2, where the constant of proportionality equals w2. The pullback pro-
ceeds as in the proof of Proposition 4.1. The right-hand P-symbol of (26) is
pulled back via z=R(w) to

P ˛
[A] [B] [C]

:
w

0 0 0

1 1 1

ˇ , (28)

So the pulled-back ODE on gAŒBŒCŒ (or more generally, on C) has
no singular points and should be effectively (d2/dw2) P̃surr(w)=0, as can
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be verified by an explicit computation. Therefore P̃surr must be linear. Since
P̃surr(BŒ)=0 and P̃surr(CŒ)=1, the proposition follows. L

APPENDIX A: HYPERGEOMETRIC FUNCTIONS, P-SYMBOLS

The following are facts about the generalized hypergeometric function
q+1Fq and its ODE. (21) Let the rising factorial a(a+1) · · · (a+k − 1) be
denoted (a)k; by convention, (a)0 is interpreted as unity. Then for
any q \ 1, the function q+1Fq(a1,..., aq+1; b1,..., bq; z) is defined by

q+1Fq
1a1,..., aq+1

b1,..., bq

: z2= C
.

k=0

(a1)k · · · (aq+1)k

(b1)k · · · (bq)k

zk

k!
. (A.1)

Provided no denominator parameter bi is a nonpositive integer, the series
coefficients are finite and the series converges absolutely on the open unit
disk |z| < 1. Provided R(; bi − ; ai) > 0, it converges on |z|=1, as well.
Let J=def z d/dz. Then on the disk, q+1Fq satisfies the order-(q+1) ODE

[J(J+b1 − 1) · · · (J+bq − 1) − z(J+a1) · · · (J+aq+1)] F=0. (A.2)

It is the only solution analytic at z=0 and equalling unity there.
The natural domain of definition of (A2) is the Riemann sphere

CP1=def
C 2 .. By examination, this ODE has z=0, 1, . as its only singu-

lar points, and is Fuchsian: each singular point is regular. q+1Fq can be
continued to a meromorphic function on CP1 0{0, 1, .}, which is generally
multivalued. In fact, the solution space of (A.2) is a (q+1)-dimensional
space of multivalued meromorphic functions. To avoid multivaluedness,
CP1 is cut along [1, .]. By definition, q+1Fq is the continuation of the
series from the disk to CP1 0[1, .].

The solution space of any order-n Fuchsian ODE on CP1 with three
singular points is determined to a large extent by their locations and the
n characteristic exponents associated to each. (16) Let z1, z2, z3 ¥ CP1 denote
the singular points, and r (i)

1 ,..., r (i)
n ¥ C the exponents of z=zi. If zi ] .,

this generally means that for each j ¥ {1,..., n}, the equation has a solution
asymptotic to (z − zi)r

(i)
j as z Q zi. (If zi=., then (z − zj)r

(i)
j must be inter-

preted as z−r
(i)
j . Also, if the difference between any pair of exponents of a

singular point is an integer, the solution corresponding to the smaller one
may include a logarithmic factor.) This definition of characteristic expo-
nents extends immediately to ordinary points. The n exponents of any finite
ordinary point z ] z1, z2, z3 are 0, 1,..., n − 1.
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The Riemann P-symbol for such an ODE, or for its solution space, is

P ˛
z1 z2 z3

:
z

r (1)
1 r (2)

1 r (3)
1

x x x

r (1)
n r (2)

n r (3)
n

ˇ , (A.3)

where the order of exponents in each column is not significant. This
tableau facilitates symbolic manipulation. For example, multiplying the
general solution by (z − z0)c will add c to the exponents of z=z0 and − c to
the exponents of z=..

It is readily verified that the ODE (A2) has exponents 0, 1 −
b1,..., 1 − bq at z=0, exponents 0, 1, 2,..., q − 1, s at z=1, and exponents
a1,..., aq+1 at z=., where s=def ; bi − ; ai. (This seems not to be well
known; it is only partially explained in ref. 21.) In an ad hoc notation, we
write

q+1Fq
R a1,..., aq+1

b1,..., bq

: z 2 3 P ˛
0 1 .

:
z

0 0 a1

1 − b1 1 a2

x x x

1 − bq − 1 q − 1 aq

1 − bq s aq+1

ˇ , (A.4)

with the box indicating that q+1Fq belongs to the zero exponent at z=0.
The sum of the 3(q+1) exponents equals (q+1

2 ), though this property is not
specific to the hypergeometric ODE: it holds for any order-(q+1) Fuchsian
ODE on CP1 with three singular points. So there are only 3q+2 independent
exponent parameters.

Any order-(q+1) Fuchsian ODE on CP1 with three singular points,
or more accurately its solution space, is characterized by the 3q+2 inde-
pendent exponent parameters and (q

2) additional ‘‘accessory’’ parameters,
which together with the exponent parameters determine the global
monodromy. (See Poole, (16) Section 20, for a normal form for the ODE
from which the parameters may be extracted, with some effort.) The second-
order (i.e., q=1) case is special in that there are no accessory parameters,
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and the solution space of the ODE is uniquely determined by its P-symbol.
This is not the case when q \ 2, i.e., when the ODE is of third or higher
order.

If the q+1 exponents of one of the three singular points are
0, 1,..., q − 1, s for some s, up to an overall additive constant, we say the
ODE is of hypergeometric type. Provided its (q

2) accessory parameters take
suitable values, the solutions of any ODE of hypergeometric type can be
expressed in terms of hypergeometric functions, since it can be transformed
to the hypergeometric ODE by redefining its independent and dependent
variables so as to move its singular points to 0, 1, ., and remove the
additive constant.
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